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Abstract-An analytical study of buckling of rectangular sandwich plates, stressed uniaxially by
uniform shortening beyond the elastic limits of component materials, is presented. The analysis is
based on the inelastic behavior according to both the J 2-incremental and Jrdeformation theories of
plasticity. Taking the loaded edges as simply supported, the governing equations are solved for (a)
plates simply supported on all four sides, and (b) plates simply supported on three sides and free
on the fourth side. The theory gives rise to two sets of boundary conditions, each representing
"simple support". It is shown that these alternative choices lead to significantly different predictions
of the buckling load in the case of sandwich plates simply supported on three sides and free on the
fourth, unloaded side. The presented analysis can be specialized to elastic buckling of sandwich
plates, and also to elastic or plastic buckling of homogeneous (one-material) plates with or without
the transverse shear effects.
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moduli used in the stress-strain relations. Subscripts f and c refer, respectively, to the moduli
of the facing and core materials
length and width of a rectangular sandwich plate
composite moduli for a sandwich plate
Young's modulus of elasticity
secant, tangent moduli
quantity used in deformation theory
= kF,h]
core thickness
second invariant of the deviatoric stress tensor ( = *S"Si)
shear correction factor -
moment stress resultants/unit length of the plate due to buckling
number of half-waves in a buckled plate in longitudinal and transverse directions, respectively
buckling load/unit edge length
transverse shear stress resultants/unit length of the plate due to buckling
x, y, z displacement components
= mn/a
components of the infinitesimal strain tensor due to buckling
= F/G, a parameter related to the ratio of transverse shear moduli of the core and facings
= P"h'/F, buckling parameter
= E/E" ratio of Young's modulus to tangent modulus in uniaxial compression test
Poisson's ratio
= P,,/2t = nominal buckling stress
increment of stress components due to buckling
stress-strain in uniaxial compression
component of rotation of the normal to middle plane about y-axis
component of rotation of the normal to middle plane about x-axis
variables, alternative to tj> and ljJ, respectively
= elY, non-dimensional variable in place of y

1. INTRODUCTION

It is well recognized that the analysis and design of sandwich structural components are
more complex and varied than those of homogeneous ones. A typical example illustrating
this difficulty lies in the analysis of sandwich plates, consisting of metal facings and a core
of a different material. Since usually the core is of a material with a shear modulus
much lower than that of the facing plates, consideration of the effect of transverse shear
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deformations is offundamental importance in structural analysis of sandwich plates. This is
in contrast to the theory of homogeneous plates, where such deformations are of secondary
importance and are usually neglected. Moreover, since facings are relatively thin, stability
considerations also become important in determining the behavior of the sandwich plates.
Thus, the analysis of sandwich plates calls for a higher-order theory than that normally
used for homogeneous plates.

Reissner (1945) was the first to devise an engineering theory which took into account
the effect of transverse shear deformations on the elastic bending behavior of plates in a
simple manner. The fundamental variables in his theory are the two transverse shears (V,
and V,) and the transverse deflection w, leading to three simultaneous partial differential
equations in these variables. With some additional assumptions, Reissner extended his
theory to "finite" elastic deflections of sandwich plates, and also to their elastic buckling
(Reissner, 1948).

The work of Libove and Batdorf (1947) is concerned especially with the formulation
of a theory applicable to the elastic bending and buckling analysis of sandwich plates with
orthotropic or isotropic cores. They used basically the same variables as Reissner (1945),
but their approach is based on kinematic rather than on stress assumptions. This approach
enables them to present an alternative derivation of the governing equations and boundary
conditions, using the principle of stationary potential energy. Hoff (1950) presented a
somewhat simpler theory of sandwich plates by using the in-plane facing displacement
components, u, v, and the out-of-plane deflection, lV, as his basic variables, and obtained
governing equations using the energy approach.

The theory of Libove and Batdorf (1947) was applied to the buckling of sandwich
plates, both in the elastic and inelastic ranges, by Seide and Stowell (1948). They obtained
the buckling stresses for flat, rectangular, simply supported sandwich plates loaded in
uniaxial compression, and compared their results with available experimental results. The
stress-strain relations used for the inelastic range were according to the 12-deformation
theory of plasticity.

Since the governing equations for the buckling analysis are, in general, a set of
simultaneous partial differential equations, rigorous solutions can be obtained only for
cases with simple boundary conditions, for example, simply supported conditions. This has
led to the situation that, whereas theories abound (Chang et al., 1967; Plantema, 1966;
Howard, 1969), solutions of practically important problems (other than the buckling of
rectangular sandwich plates simply supported on all sides) are lacking. A notable exception
is the work of Bijlaard (l95Ia,b), in which the author gives results for several cases of
boundary conditions of rectangular sandwich plates, and also deals with the inelastic
instability of these plates on the basis of the lrdeformation theory of plasticity. However,
again, these results are rigorous only for the simply supported plates.

One of the objectives of the present investigation is to present a theory of buckling of
sandwich plates which is simpler than the aforementioned theories in the choice of basic
variables and in the resulting system of differential equations. Instead of the shears (V" V,),
the rotations (8,rjJ) are taken as the basic dependent variables. The general theory is that
reported in Shrivastava (1979), and is applied in this work to the inelastic bifurcation
buckling of sandwich plates, using both the incremental and deformation theories of
plasticity. The inelastic constitutive relations for both theories are based on the Mises yield
condition (12 = c) and on Shanley's concept of bifurcation buckling under continued
loading (d12 > 0).

Although the incremental theory is considered as the correct phenomenological theory
of plasticity, it is well known that, when applied to bifurcation buckling offlat homogeneous
plates, it predicts results which are unrealistically higher than the experimental values. On
the other hand, the deformation theory of plasticity gives results which are in reasonable
(and safe-side) agreement with experiments. Hence, despite its ostensibly "weak" theoretical
basis, investigators have continued to use the deformation theory in analyzing plastic
buckling of plate and shell structures.

In this paper, results are derived according to both plasticity theories, so that a
comparison can be made to see to what extent the results diverge in the case of sandwich
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plates. Rigorous analysis is carried out for buckling of flat rectangular sandwich plates
loaded by uniform shortening in the longitudinal direction. The loaded (x = constant)
edges are considered simply supported, while the unloaded (y = constant) edges are allowed
to be subjected to various boundary conditions. Although the core material may be con
sidered to be in the inelastic range, together with the facings, the presented analysis is
restricted to isotropic elastic behavior of the core. Two important cases of buckling of long
sandwich plates (with longitudinal edges unloaded) are considered: (I) both longitudinal
edges are simply supported; and (2) one longitudinal edge is simply supported and the
other is free. Moreover, separate analyses are made for the two choices of simple-support
conditions on the longitudinal edges, corresponding to whether the twisting angle, ¢, or
the twisting moment, M", is taken to be zero. It is shown that the differences between the
buckling stresses so obtained become very significant in the case of plates supported on
three edges and free on the fourth edge; such differences do not arise in the case of
homogeneous plates.

Although the analysis is exact, closed-form solution is obtainable only in the simplest
case. Thus, the use of a computer becomes essential in solving the characteristic equation
for obtaining numerical values of the buckling loads. These are given for sandwich plates
consisting of 24S-T3 aluminum alloy facings and balsa wood core. The validity of the
analytical procedure and the verification of the computer program were carried out by
considering the degenerated case of the buckling of homogeneous plates. The results thus
obtained agree with those of Shrivastava (1979). It may be noted that the present analysis
assumes the core to be sufficiently strong in the thickness. z, direction, that wrinkling
instability of facings does not occur. This type of instability in the elastic range has been
considered by several investigators, e.g. Yusuff (1955).

2. CONSTITCTIVE RELAnONS

Figure I shows the plate and the coordinate system used for the buckling analysis. The
plate is taken to be a perfect plane, with facings of uniform and equal thickness and located
symmetrically with respect to the middle plane z = O. The core thickness is denoted by h,
and that offacings by t.

The common assumptions of the two plasticity theories are taken to be: (I) that the
strains are small, with the plastic part being volume-preserving, and (2) that the material is
loaded from a virgin state, remains isotropic, and obeys the Mises yield condition, namely
J2 = (J2/3, where (J is the (true) stress recorded in the uniaxial compression test of the virgin
material in the plastic range.

The prebuckling state of stress is assumed to be uniaxially compressive ((J1l = 0 except
(J~x = - (J), corresponding to a uniform shortening of the plate in the x (longitudinal)
direction (thus ignoring other presumably small prebuckling stresses arising out of dis
placement compatibility at perfectly bonded sandwich interfaces). When the plate buckles,
the state of stress is changed from (J'j to (J,/ + d(J;j, dO',/ being the increment in stress
components due to buckling. Invoking the usual engineering approximation that dO'cz = 0,
the relationship between dO'i/ and the increments of strain dB;j, for the case of loading
(dJ 2 > 0), are taken from Shrivastava (J 979) as

where

B' = ECA+3+3e)/[),(5-4\'+3e)-(1-2\,)2],

C = 2E (I, - I + 2v)/[),(5 - 4\' + 3e) - (I ~ 2\,)2],

D' = 4D;[).(5-4\'+3e)-(1-2v)2],

F' = E/(2+2v+3e). (2)

The parameters A = E; E, and e = (E/ EJ - I are considered obtainable from a uniaxial
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compression test. E, and Es denote, respectively, the tangent and secant moduli at the stress
level a.

The relations (2), as they are written, are derived according to the J 2-deformation
theory of plasticity. However, they include relations according to the J 2-incremental theory
of plasticity, and also those for the linear isotropic elastic case. The former are obtained by
substituting e = 0 in eqns (2), and the latter by putting e = 0 and ), = I. Thus, the analysis
based on the deformation theory of plasticity can be immediately specialized to that for the
incremental plasticity theory and elastic theory. In the analysis that follows, subscripts or
superscripts f and c will be used to distinguish facings and core properties, respectively.

3. GOVERNING EQUATIONS AND THEIR SOLUTION

In order to account for the effect of transverse shear deformations, the kinematic
hypothesis of Kirchhoff in conventional plate theory is modified by assuming that a normal
to the undeflected middle plane remains straight, but not necessarily perpendicular to the
deflected middle surface. Then, denoting by ¢ and ljJ the components of rotation of the
normal in the x-z and y-z planes, respectively, the displacements of the points of the plate,
arising due to buckling, are taken as

il = u (x,Y) -z¢(x,y),

V = v (x,y) -zljJ(x,y),

IV = w(x,y), (3)

where u, v, ware the displacement components of points at the middle plane z = O. As is
evident, the last of eqns (3) implies dezz = 0, in conflict with the previous assumption of
dazz = O. However, as in the case of homogeneous plates, this inconsistency is considered
unimportant for plates which are only moderately thick, and in which the core material is
sufficiently stiff in the z-direction.

The equilibrium equations and the boundary conditions, appropriate to the above
kinematic assumptions, are obtained by using the principle of virtual work. The equilibrium
equations pertaining to the out-of-plane buckling (u = v = 0, w i= 0) of a plate loaded by
uniform compressive load in the x-direction, are

oM" aM,y aM,y oMvv oQx oQv
-::1- + -::1- -Qx = -~- + -::1-' -Qv = -~- +~ -Pcrwxx = 0, (4)

uX uy ox uy . ox uy

with the work-conjugate pairs of boundary conditions

M xx = 0 or C5¢ = 0, M,y = 0 or C5ljJ = 0, Qx = Pcrw, or C5w = 0 (5a)

at the edges x = constant, and

M VY = 0 or C5ljJ = 0, M xy = 0 or C5¢ = 0, Qy = 0 or C5w = 0 (5b)

at the edges y = constant. Per is the uniform compressive load per unit width of the plate
at which it begins to buckle, and is given by

(6)

where af is the stress in the facings, and ac that in the core at the instant of buckling.
Now, in accordance with Shanley's concept in the plastic buckling of columns, it is

postulated that the plastic buckling occurs under increasing load, so that there is no
unloading from plasticity when the plane plate bifurcates into a buckled shape. The relations
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(2), therefore, apply throughout thc thickness of the plate, and the buckling stress resultants
are expressible as

M,x = -[BcPx+Op"J, M n = -[CcPx+DljJy], M,y = -F[cPy+ljJJ,

Qx = G[-cP+ W J/h 2
, Qy = G[-ljJ+wy ]/h 2

, (7)

where

B~h3l B~ lB = - I + ~- f'(l)
12 B~' ,

Ch3l c' l
C = ----t2 1+ C~ f(t) ,

(Sa)

G = kF~h3, and f(t) = 6(t/h)+ 12(t/h? +S(t/h)3. (Sb)

The coefficients B~, C;, D~ and F~ for the facing material, and B~, C~, D~ and F~ for
the core, are defined by using appropriate material constants in eqns (2), where it should
be remembered that the axial compressive stress in the core is different from that in the
facings. The symbol k stands for a correction factor which takes into account (contrary to
the strain assumption) the non-uniform distribution of transverse shear stresses through
the thickness of the plate. It can be shown that k ~ 1 for sandwich plates of moderate
facing/core thickness ratio (t/h ,,:; 0.25), whereas it is well known that k = 5/6 for homo
geneous plates. Here, we take k = I.

Substitution of relations (6) into the equilibrium equations (4) leads to the following
set of governing equations:

(9)

The boundary conditions on stress resultants may also be expressed in terms of cP, ljJ
and W by means of eqns (5). The above partial differential equations, together with the
homogeneous boundary conditions, constitute a linear symmetric eigenvalue problem for
determining the eigenvalue parameter Pcr• We also note that eqns (9) cease to represent the
eigenvalue problem when Pcr = G/h2 ~ F~h. This value of Pcr is associated with the pure
shear (crimping) instability of the core. Consequently, we restrict our attention to such
sandwich plates for which Pcr < G/h2

•

It seems that in numerical solutions of these equations (not attempted here), they may
prove difficult to solve accurately, on account of the differences in approximately equal
quantities (e.g. between cP and wJ. To remedy this likelihood in future applications, we
introduce the following change of variables:

where

G ( aw)- - cP + -:::-",_ = p,
F ex

G ( O,W)- -ljJ+ --;;- = (),
F rJy

OW
or cP = - -f,{3,ax

OW
or ljJ = -:::- - B(),

oy

and

(10)
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F l F' ]3=G= I+F~f(t) /12k.

The governing equations (9) are then transformed into

We note that the above introduction of variables {3 and (} amounts to introducing the shears
Vx and Vy of Reissner's (1945) theory. For a homogeneous plate one has t = °and k = 5/6,
and G takes on its minimum value, 0.1. The neglect of transverse shear deformations
(Kirchhoff theory) entails G = 0.

Separation ofvariables
For an analytical approach, the treatment is restricted to the boundary conditions

which allow separation of variables. The conditions at the loaded edges allowing this
separation are

l ucjJ Oif;]M u = - B--;- +C -::;--- = 0, W = 0, if; = 0 at x = 0, a.
uX oy

(12)

These boundary conditions correspond to simple support of the type in which rotation
perpendicular to the edge is unrestricted (Mu = 0) but rotation parallel to the edge is
restricted (i.e. if; = 0, and hence M x \ =1= 0). In practice, this type of edge constraint may be
realized, for example, by welding a stiff channel to the facings.

A possible solution to eqns (9), which satisfies the above boundary conditions, is

W(11) .
cjJ(X,11) = <1>(11) cos (ax), if;(X,11) = \fI(11) sin (ax), W(X,11) = --Sill (ax), (13)

a

where a = mn/a, m is the number of half-waves in which the plate buckles, a is the length
of the plate, and 11 is a non-dimensional coordinate defined by

mny
11 = ay = --' .

a

In terms of the transformed variables the above relations are equivalent to :

1 _ . _
{3(X,11) =-[-<1>(11)+W(11))'cos(ax) = {3(11) cos (ax),

3

1l dW(11)] .. -.(}(X, 11) = ~ -\fI(11) +~ . Sill (ax) = (}(11) sm (ax),

where

(14)

(15)
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- - 1 - - - II dW(ry)]f3=f3(ry)=-[-<D(ry)+W(ry)]and8=8(ry)=- -'P(I1)+-d- .
8 8 ry

1105

(16)

Substituting eqns (15) into eqns (11), the following ordinary differential equations with
non-dimensional coefficients are obtained:

{C;F]:~+ l- 8~ ~,~~ + (8+ h-2la2 )8]+ l~ dd~~ - (2+ ~)~:] = 0,

_ dO Pcrh2_
f3 - d/] - ----p- W = 0. (17)

Following the usual procedure, let the solution of eqns (17) be expressed as

W = A I exp (SI1), lJ = B I exp (SI1), (] = C l exp (sl1)·

Then it follows from eqns (17) that r = S2 is a root of

where

and

B C2 2C
R=--+-+--.

F DF D

Solution
Let the roots of the cubic equation, eqn (19), be written as

rl = _q2, r2 = (a+ ib), r, = (a- ib),

(18)

(19)

(20)

(21 )

(22)

where a and q2 are real numbers. However, b can be either purely real (say positive), purely
complex, or zero, depending on whether the two latter roots are complex conjugate, real
and distinct, or real and equal, respectively. Then, in view of'Y= S2, we have

S, = (c+id), S4 = -(c+id),
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S5 = (c-id), S6 = - (c-id), (23)

By introducing the notation

sin (ql])
91 = --, 92 = cos (ql]),

q

. sinh (dl])
93=smh(cl]) d ,94=cosh(cl])cosh(dl]),

sinh (dl])
95 = cosh (cl]) d ,96 = sinh (CI]) cosh (dl]),

the general solution is expressible as

6 6 6
P= L 9iBI' e= L 9i Ci' w= I9iAi'

i=1 i= 1 i=1

(25)

(26)

We remark that this solution form is quite general, and incorporates in particular the
cases of equal roots (d = 0) and unequal roots (d = purely imaginary), provided we set
sinh (dl])/d = I] in the former case and use sinh (dl])/d = sin (dl])/d and cosh (dl]) = cos(dl])
in the latter case. In matrix form the solution can be expressed as

P=(9){B}, 8 = (9){C}, w= (9){A}, (27)

where (9) == (919293949596)' The derivatives are expressible as

dfi de dW
dl] = (9) [Z]{B} , dl] = (9)[Z]{C}, (l;J = (9)[Z]{A} , (28)

d2~ = (9)[Z]2{B},
d28 d2W
dl]2 = (9)[zf{C}, - = (9)[zf{A}, (29)

dl]- dl]2

where

0 _q2 0 0 0 0

I 0 0 0 0 0

0 0 0 0 C d 2
[Z] =

0 0 0 0
(30)

C

0 0 C d 2 0 0

0 0 C 0 0

Now, the connection between {B}, {C} and {A} is obtained by substituting eqns (27)~

(29) in two of the governing equations (17), chosen here to be the first two. This gives

[C: + h2l
rt2}I]-8[Zf}B}-{C;F}Z]{C}+[-~[I]+(2+~)[Zf}A}=0,

{C;F}Z]{B} +[ _ 8~ [Z]2+(8+ h21rt2}I]}C} +[~ [Z]3 -(2+ ~)[Z]}A} = 0,

(31 )
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where [I] denotes the identity matrix.
We write the above two equations as

[M]{B}_e(C;F}z]{C} = [P]{A},

e(C;F}Z]{B}+[N]{C} = [Q]{A},

by defining

[M] = [(e: + h21:t2 )[I]-dZr}

The desired relationships are then given by

{B} = [S]{A} , {C} = [T]{A}

in which we have introduced the notation

1107

(32)

(33)

(34)

(35)

(36)

(37)

The general solution and its derivatives, eqns (27)-(28), can now be written as

P= <g) [S]{A}, e= <g)[T]{A}, TV = <g) {A}, (40)

dP c

dry = <g) [Z][S]{A} = <g)[S]{A},

where we have put

de c

dry = <g)[Z][T]{A} = <g)[T]{A}

dTV
(l;/ = <g)[Z]{A}, (41)
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[S] = [Z][S] and [1'] = [Z][T]. (42)

The constants {A} are to be determined by requiring the solution to satisfy the boundary
conditions.

Boundary conditions
The solution obtained above can be used to find elastic/plastic buckling loads of

rectangular plates for a variety oflongitudinal edge conditons, keeping in mind the provision
that the loaded edges are always simply supported (satisfying ljJ = 0 rather than M H = 0).
As remarked in the Introduction, we choose to treat here only the cases of (i) plates ~imply

supported on all sides, and (ii) those simply supported on three sides but free on the fourth
(longitudinal) side. The boundary conditions required in treating them can be listed as
follows:

w = 0, Qy = 0, M yy = 0, ¢ = 0, M xy = 0 (43)

at the longitudinal (1] = constant) edges. In terms of the solution functions these can be
expressed as

w = 0 -+ W= 0-+ <g)[/]{A} = 0,

C C ]
-£ D[S]+ D[I] {A} = <g)[A]{A} = 0,

¢ = 0 -+ <I> = <g)[ -£[S]+[/]]{A} = <g)[J.l]{A} = O.

M" = 0 -+ £(8+ P~)-2W~ = <g)[e[T]+£[S]-2[Z]]{A} = <g)[<5]{A} = 0,

(44)

(45)

(46)

(47)

(48)

where we recall that £ = F/G, and <g) denotes values of the functions <g) at an 1] = constant
boundary. The newly introduced matrices [A], [J.l]' and [<5] have the following structures:

AI 0 0 0 0 0

0 Al 0 0 0 0

? C C 0 0 1.3 ).4 d2 0 0
[A] = £[T]- [Z]- -£ D[S] + D [I] =

0 0 1\4 A3 0 0

0 0 0 0 A3 A4d 2

0 0 0 0 A4 A3

J.lI 0 0 0 0 0

0 J.l1 0 0 0 0

0 0 J.l3 J.l4 d2 0 0
[J.l] = -£[S]+[/] =

0 0 0 0J.l4 J.l3

0 0 0 0 J.l3 J.l4 d2

0 0 0 0 J.l4 fl3

(49)

(50)
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0 - 62q 2 0 0 0 0

62 0 0 0 0 0

0 0 0 0 <5 3 6 4 d 2

[<5] = s[T]+£[S]-2[Z] =
0 0 0 0 <5 4 63

(51 )

0 0 <5 3 <5 4 d 2 0 0

0 0 <5 4 63 0 0

wherein we have put A2 = 112 = 6 I = 0 by virtue of the nature of[Z].

4. RECTANGULAR SANDWICH PLATES SIMPLY SUPPORTED ON ALL SIDES

The coordinate system with respect to the plate configuration is shown in Fig. 1.
According to the conventional (Kirchhoff) theory for homogeneous plates, the two bound
ary conditions which correspond to the simple-support condition at the edge y = constant
are My! = 0 and w = O. However, as indicated in Section 3, the present theory for sandwich
plates requires the satisfaction of an additional condition, which can be either M xy = 0 or
cD = O. Both conditions (or an intermediate one) can occur in practice, and the appropriate
choice will be dictated by the physical features of the problem at hand. The analysis
presented herein is carried out for both types of "simple supports" at the edges y = ±b/2,
although it may be recalled that the loaded edges (x = 0, a) have been assumed simply
supported in the sense M n : = w = ljJ = O. This latter choice was necessary for effecting
separation of variables.

Since the edge conditions at y = ± b/2 are symmetric, the plate can buckle either in
a symmetric mode, implying AI = As = An = 0, or in an antisymmetric mode, meaning
A 2 = A 3 = A4 = O. Hence, the characteristic determinant which is required to vanish for
buckling is of 3 x 3 size.

(l) Boundary conditions case A : at '7 = ± rxb/2.

These conditions imply that for a symmetric mode of buckling

y

Fig. I. Sandwich plate configuration and coordinate system.
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[

(9) [1][H] Jj
A

2) 1°)
(9) [A][H] A 3 = °,
(9) [fL] [H] A4 °

(52)

wherein (9) denotes <g) evaluated at 1'/ = rxb/2 = mnb/2a, and

[H] =

000

I 0 0

010

o 0 1

000

000

(53)

For a non-trivial solution (i.e. buckling), the determinant of the above set of homogeneous
equations must vanish:

[

92

det A1 ~2

fLlg2

93

A393 +A494

fL393 + fL494

94 J
d

2 A493 +A394 = O.

d
2

J1.493 + J1.394

(54)

When expanded, this equation, determining the buckling parameter, becomes:

qrxb [ (crxb). (drxb)JLl l cosT cosh2 T +smh2 T = 0,

where

(55)

(56)

Considering now the antisymmetric mode of buckling, requiring A 2 = A 3 = A4 = 0,
the characteristic equation is found to be of the following form :

qrxb [. 2 (crxb) . 2 (drxb)JLl l sinT smh T -smh T = 0, (57)

wherein Ll l is exactly that given above for the symmetric buckling mode equation (56). Since
the mode can either be symmetric or antisymmetric, Ll i does not vanish, and accordingly for
buckling we must have

qrxb . qrxb
cos- = Oorsm- = 0

2 2

for symmetric and antisymmetric modes, respectively. This implies that

nn na
q=-=-rxb mb'

(58)

(59)

where n is a positive integer equal to the number of half waves in the y-direction, being odd
for symmetric modes and even for antisymmetric ones. On the other hand, m is, as may be
recalled, the number of half-waves in the longitudinal direction. Now since _q2 is a root
of eqn (19), the above value can be used to yield the critical load in the closed form
expression as
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Pcr = nCbnJ (;~J
I + (4F~2C) (::y + ~ (::y +8 C~nJ[l+(I-R) (::y

+ (~-R) (::y + ~ (::YJ

(60)

This type of result is classical, and has been given, for example, by Seide and Stowell
(1948). From eqn (54) it follows that for the symmetric mode shape only A 2, B2 and C1 are
non-zero, and that for the antisymmetric mode only AI> BI> C2 are non-zero. In other words,
the modes are purely sinusoidal.

(2) Boundary conditions case B : IV) 10
My.!' = °
M xy °

at y = ±b/2.

This is the case of simple supports without any rotation restraint. For symmetric
modes, the above boundary conditions are expressible as

[
<g)[1][H].l

A2
11°i<g) [A][H] A 3 = °,

<g)[15][H] A 4 °
(61)

where <g) and [H] are the same as in case A. The buckling condition can be written as

[

g2

det AI g2

-q2 15 2 g1

which in expanded form is

g3

}·3 g3 + }.4g4

15 3 gs +154 g6

(62)

I . (qmnb) (qmnb) [ . (cmnb) (Cmnb)r, qsm ~ +cos ~ r 2 smh ~ cosh ~

I (dmnb) (dmnb)J-r3dsinh ~ cosh ~ = °
where

2 • [ 2 (Cmnb) . 2 (dmnb)Jr 1 = q 15 2 1'.4 cosh ~ +smh 2;;- ,

(63)

(64)

On the other hand, the characteristic equation for antisymmetric modes is found to be
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* (qmnb) 1. (qmnb)l . (cmnb) (cmnb)r 1 COS -2- + - sm -2- r 2 SInh -2- cosh -2-
a q a a a

I. (mnnb) (dmnb)J+r3dsmh ~ cosh ~ = 0,

where

and r 2 and r 3 are exactly those for the symmetric modes.

(65)

(66)

Numerical results and discussion
In view of the complexity of the characteristic equations, a trial and error numerical

approach using a computer becomes essential for obtaining the buckling loads. For this
purpose the facings are taken to be of aluminum (24S-T3) alloy, having a uniaxial stress
strain (81- 0'1) curve, modeled by

(67)

The above formula models the stress-strain curve used by Seide and Stowell (1948), and is
meaningful up to a stress level of about 45 ksi (310 MPa) with plasticity setting around 25
ksi (172 MPa). Poisson's ratio is taken as 1/3. The core is taken to be balsa wood, idealized
as an isotropic elastic material with Young's modulus equal to 53.2 ksi (367 MPa) and
Poisson's ratio equal to 0.4. This also is the same material as used by Seide and Stowell
(1948). The core is assumed to remain elastic.

Choosing specific values of tlh, alb, blh and a provisional value of m (the number of
half-waves in which the plate could buckle in the longitudinal direction), the computer
program determines the minimum shortening strain (and hence O'r, O'c and Pcr) for which
the characteristic equation is satisfied. The procedure is repeated for different values of m;
the critical load Per is given by that m for which it is the smallest.

Figures 2 and 3 show the variation of the critical buckling stress with respect to the
blh ratio of the plate. This buckling stress is defined nominally as O'er = Per/2t = O'r+ (hI2t)O'c;
it will be close to the buckling stress in the facing material if the Young's modulus of the
core material is much smaller than that of the facing material.

45

41

'<Ii 37""
_._--

'=
<Jl
<Jl 33 .- -._--
!!:!
iii
0; Four Sides Simply Supported(,) 29
"" <D =0 Case; I =Incremental,<3 D = Deformation Theory
/I
b

25

21 _.__.-

17
30 40 50 60 70 80

bfh = Width / Thickness

Fig. 2. Critical stress u" vs hjh for buckling of long rectangular sandwich plates (alh = 10) simply
supported on all four sides with 1> = 0 assumed on the unloaded edges (case A).
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Fig. 3. Critical stress au vs h;h for buckling of long rectangular sandwich plates (a/b = 10) simply
supported on all four sides with lId" = 0 assumed on the unloaded edges (case B).

The plate dimensions for which the buckling graphs are plotted are alb = 10 and
IIh = 0.15 and 0.1. This alb ratio is considered large enough to render the plate "infinitely"
long. Figure 2 shows the buckling curve for the case when simple supports on the y = ± bl2
edges are assumed to mean ¢ = 0 (together with II' = M" = 0). Results from both the
incremental and deformation theories of plasticity are shown. As usual, the results from
the incremental theory correspond to higher buckling loads than those from the deformation
theory. This difference becomes greater at higher buckling loads, reaching about 10% for
Ilh = 0.1 and about 5% for Ilh = 0.15, at the upper limit of the meaningful range of the
stress-strain curve. Figure 3 gives the buckling load when the condition of simple supports
is modeled by taking It' = M'l = 0 and My, = 0 (rather than ¢ = 0). The differences between
the results of the two theories are found similar to those for Fig. 2. However, comparing
Figs 2 and 3, it is seen that the buckling loads in the My, = 0 case are about 5% lower than
in the case ¢ = 0, for both plasticity theories.

Mode shapes
The mode shapes in the longitudinal directions are sinusoidal. In the transverse direc

tion the mode shapes for displacement and rotation can be expressed in terms of the vectors
{A}, {B*}, {C*}, by choosing the dominant element in (A} as unity. We have from eqns
(15),

W = <.q> (A}, (p = <.q> [B* }, If = <g> {C* }, (68)

where

{B*} = [[I]-c;[Sj]{A] and [C*: = [[Z]-r,[T]]{A}. (69)

As a typical example of the relative magnitudes, Table I defines the mode shapes for the

Table I. Buckling mode shapes of a sandwich plate simply supported on all four sides

Deformation theory (alb = 10, blh = 45, flh = 0.1)
4> = 0 (111 = 14. a" = 40.4 ksi) tv! .. = 0 (/11 = 13. au = 39.0 ksi)

Roots q = 0.71. c = 2.30. Ii = 0.71 q = 0.73. c = 2.4. d = 0.82
(A) (0.1.0.0.0.0) (0.1.0.0052. -0.0063.0,0)
(B*) (0.0.75.0.0.0.0) (0.0.76.0.011. -0.011.0.0)
(C*) (-0.33.0.0.0.0.0) (-0.37.0.0,0.0.013. -0.(15)

Incremental Theory (alb = 10, blh = 45, flh = 0.1)
l' = 0 (111 = 16. a" = 44.1 ksi) /'vI" = 0 (m = 14. a" = 41.8 ksi)

Roots 'I = 0.62. c = 1.86. d = 0.36 i 'l = 067. c = 2.07. d = 0.31
(A) (0.1.0.0.0.0) (0.1.00019. -0.0052.0.0)
(B*) (O,o.no.o.o.O) (0.0.74.0.0088. -0.012.0. 0)
(C*) (-0.21,0.0.0.0.0) (-0.27,0.0,0.0.0075, -0.015)

SAS 32-8/9-G
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two alternative types of simple supports at the edges y = ± b12, for a plate of size alb = 10,
blh = 45, and tlh = 0.1. The mode shapes are necessarily sinusoidal for the ¢ = 0 cases and
are easy to visualize, while those for the M q = 0 cases are not too different from them.
Clearly, the relative magnitudes are larger for the deformation theory than for the incremen
tal one. Moreover, they are larger for the M xy = 0 cases, indicating a more unconstrained
behavior. Consistent with these observations, the number of buckles is larger for the
incremental theory and ¢ = 0 cases.

5. RECTANGULAR SANDWICH PLATES SIMPLY SUPPORTED ON THREE SIDES AND
FREE ON THE FOURTH SIDE

It may be recalled that two of the simply supported edges are the transverse ones,
x = 0, a, at which the compression is applied. For simplifying the analysis in this section,
the origin of the coordinate system is changed so that the third simply supported edge is
the longitudinal edge y = 0, while the free edge is y = b. The boundary conditions at the
free (y = b) edge are clearly M xv = M w = Q = 0; however those at the supported (y = 0)
edge can be either M yy = W = M q = Oor M VY = W = t/J = O. As in Section 4, both of these
possibilities are investigated as cases C and D.

(3) Boundary conditions case C : W 10:y = ~ M

yyI !Oat y = 0 and Qy = 0 at y = b.

M xy 0

These boundary conditions amount to the buckling of a plate of width 2b in an
antisymmetric mode about the centerline y = 0, meaning that A2 = A 3 = A4 == 0 in the
solution. This buckling is identifiable with that of a sandwich column of "cruciform"
section. The characteristic determinant is of 3 x 3 size and arises from

[

(g)p.][H] JjAI [0
(g) [T] [H] As = 10 ,
(g) [15][H] A 6 0

where (9) are values of <g) at y = b (i.e. IJ = mnbla), and

I 0 0

0 0 0

0 0 0
[H] =

0 0 0

0 I 0

0 0 1

The resulting characteristic equation is :

(70)

(71)

[

AI{jj

det ~292

()292

}'39s +}'496

t393 + t494

15 393 +15494

d2A49S+A396]

d2t493+t394 = 0,

d215493 +15394

(72)

which, when expanded, can be written as
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1 (qmnb) (qmnb) [ (Cmnb) (Cmnb)r I qsin -a- + cos -a- r 2 sinh -a- cosh -a-
1 (dmnb) (dmnb)J+r3dsinh -a- cosh -a- =0,

where

r 2 = [A4(b 2 t3-63t2 ) -A3(62t4-64t2)],

r 3 = [A3(6 2 t3-63t2 ) -d2A4(62t4 -64t2)].

1115

(73)

(74)

w

(4) Boundary conditions case D:

These equations can be written as

1

0 jAdW
= 0 at y = 0 and Qy

o Ad...y

rOj
~ 1~ aty ~ b

<.q")[I] AI 0

<'<j")[A] A2 0

<'<1")[6] A3 0

<gt)[A] A4 0
(75)

<gt)[T] As 0

<gt)[6] A6 0

where <g") and <t) denote <g) evaluated at 1] = 0 and 1] = (mnbja), respectively. The
6 x 6 set of equations can be reduced to a 3 x 3 set by using the fact that the first three
equations give

(76)

In matrix notation the resulting 3 x 3 set (with redefined constants) is:

[ (g') [;][IJ] ] A,) 10
)

<gt) [T][H] As = 10 ,
<gt) [6][H] A 6 0

where

0 -b4 -63

A4 0 0

;~3 -AI 0 0
[H] =

-A4 0 0

0 62 0

0 0 62

(77)

(78)

The characteristic determinant is now of 3 x 3 size which, if desired, can be expanded
explicitly. For the sake of brevity, we refrain from writing it, and instead opt for its direct
numerical evaluation.
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Fig. 4. Critical stress (J" vs b/h for buckling of long rectangular sandwich plates (a/b = 10) simply
supported on three sides with cP = 0 assumed on the unloaded supported edge (case C).

Numerical results and discussion
The material and plate dimensions are taken to be exactly the same as in Section 4. In

particular, the plates are considered "infinitely" long (ajb = 10). Figure 4 shows variation
of the (nominal) critical stress when the edge y = 0 is simply supported in the sense ¢ = 0
(in addition to My) = W = 0). It can be seen that the buckling stresses obtained from the
incremental theory are higher than those given by the deformation theory of plasticity. The
difference increases to as much as 20% at the upper limit of the meaningful range of the
stress-strain curve for tjh = 0.1. The difference is a bit smaller for tjh = 0.15.

Figure 5 shows the variation of buckling stress when the edge y = 0 is considered
simply supported in the sense of M", = O. Again, the results from the incremental theory
are higher than those from the deformation theory, with relative differences similar to those
found in Fig. 4. However, a comparison of Fig. 5 with Fig. 4 reveals the fact that, in the
case of sandwich plates simply supported on three sides and free on the fourth side, the
values of the buckling loads are considerably different for the two choices ofsimple supports
on the edge y = 0; corresponding to ¢ = 0 (Fig. 4) and corresponding to My, = 0 (Fig. 5).
As an example, for a plate with tjh = 0.15 and using the incremental theory of plasticity, it
is seen that the buckling stress for the M x} = 0 case is generally 30% smaller than when
¢ = 0 is imposed. Similarly, for the deformation theory, the decrease is again significant
but somewhat smaller, around 23%. We recall that such a reduction in the buckling stress

22208
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D =Deformation Theory
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Fig. 5. Critical stress (J" vs bjh for buckling of long rectangular sandwich plates (ajb = 10) simply
supported on three sides with M" = 0 assumed on the unloaded supported edge (case D).
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is not predicted for plates simply supported on four sides (dealt with in Section 4), when
the ¢ = 0 condition is changed to My} = 0 at the longitudinal edges, y = ±b(2.

It may also be noted that, in the case of homogeneous plates (in contrast to the
sandwich plate), the decrease in the buckling stress when ¢ = 0 is changed to M x} = 0 is at
most around 10% (Shrivastava, 1979), whether the plate is simply supported on all four
sides or is simply supported on three sides. When the present theory is specialized to
homogeneous plates, the computer program gives results for the cases ¢ = 0 and M xy = 0,
which are within the 10% difference and which match with those obtained from the
application of the theory in Shrivastava (1979). Thus, the accuracy of the present theory
and computer programs has been verified.

It may therefore be concluded that this considerable and rather unexpected difference
in the buckling stress given by Figs 4 and 5 is peculiar to the sandwich plate. This result, to
the author's knowledge, has not been previously reported, even for the elastic buckling of
sandwich plates. It underscores the importance of distinguishing between the alternative
specifications of simple supports in sandwich plates, M n = 0 and ¢ = 0 (or t/J = 0). It
appears, however, that significant differences arise only when the boundary conditions on
the opposite edges are not symmetric. In the case of plates simply supported on aU four
sides, dealt with in Section 4, the boundary conditions are symmetric and the relaxation of
the boundary conditions from ¢ = 0 to M q = 0 on the longitudinal edges does not result
in a large reduction of the buckling load.

The question as to what happens when the boundary conditions are changed from
t/J = 0 to M xy = 0 on the loaded edges, x = 0, a, cannot be answered precisely by the present
analysis. An analysis, taking such boundary conditions into account, will have to be
numerical from the very beginning, employing either the finite element or the finite difference
method. It may, however, be conjectured that, since these boundary conditions are
symmetric, the relaxation from t/J = 0 to M xy = 0 at x = 0, a, edges may not produce a
reduction in the buckling stress which is more than 10%, as was the case when ¢ = 0 was
changed to My} = 0 on the edges y = ±b(2 in Section 4.

Mode shapes
Table 2 specifies the numerical values for determining the transverse mode shapes for

a plate with dimensions a(b = 10, b/h = 16, and t/h = 0.15 for the two cases of boundary
conditions, and for the two plasticity theories. The critical loads correspond to the plate
buckling in a single half-wave (except for the incremental theory ¢ = 0 case). In view of
their conservative nature, we limit the fol1owing discussion to the deformation theory
results. The mode shapes, shown in Figs 6 and 7, were obtained by using the Mathematica
program of Wolfram Research Inc., Champaign, IL.

Figure 6 (a) shows the deformed shapes of the two faces due to buckling, when ¢ = 0
is enforced at the supported longitudinal edge. As required by the theory, the in-plane
deformations are exactly equal but opposite for the two facings. Figure 6 (b) shows the
out-of-plane displacements of the buckled plate at various locations along the length. These
displacements are similar to the torsional-mode buckling of a homogeneous cruciform

Table 2. Buckling mode shapes of a sandwich plate simply supported on three sides and free on the fourth

Deformation theory (alb = 10, blh = 16, tlh = 0.15)
<P = °(m = 1, a" = 38.6 ksi) M n = °(m = I, ae< = 29.4 ksi)

Roots q = 2.16, (' = 7.30, d = 4.81 q = 1.90. (' = 6.72, d = 4.43
(A) (-0.78,0,0,0, I, -0.21) (-0.64, -0.014, -0.064,0.014,1, -0.22)
(B*) (0.69,0,0,0,1.19, -0.23) (-0.58, -0.013, -0.93, -0.18,2.03, -0.048)
(C*) (0, -0.69,2.80, -0.58,0,0) (0.046. -0.58,2.62, -0.55, -0.24,0.019)

Incremental theory (alb = 10, bjh = 16, tjh = 0.15)
<P = °(m = 7, ace = 42.8 ksi) M n = °(m = I, ace = 30.1 ksi)

Roots q = 0.56, (' = 1.33, d = 0.60 i q = 1.89, C = 6.58, d = 4.30
(A) (1,0,0,0,0.022, -0.11) (-0.66, -0.015, -0.066,0.015,1, -0.23)
(E*) (0.55,0,0,0, -0.033,0.14) (-0.59, -0.014, -0.94, -0.18,2.06, -0.047)
(C*) (0.0.26,0.034,0.12,0,0) (0.049, -0.59.2.63, -0.57, -0.25.0.019)
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Fig. 6. Buckling mode shapes for a sandwich plate (alb = 10, blh = 16, tlh = 0.15) simply supported
on three sides with ¢ = 0 on the unloaded supported edge (case C, deformation theory). (a) In

plane displacements of the facings, (b) out-of-plane displacements.

column, except that there is significant bending at the free edge and the maximum deflection
is somewhat inside it. We also observe that the bending is localized in the vicinity of the
free edge; the facings are strained mostly in this area.

In contrast, the mode shapes of the M xv = 0 case are as shown in Fig. 7. Here, the in
plane displacements for the two faces, Fig. 7(a), are quite different in character from those
in Fig. 6 (a). Each facing plate is able to buckle somewhat independently in the "torsional
flexural" mode. Moreover, the bending-related displacements of the facings are no longer
confined to the free edge. The mode of out-of-plane displacements, Fig. 7(b), is now very
similar to the torsional mode of a cruciform column, with virtually no bending across the

Top Facing

xlb

(a)
Bottom Facing

watxlb=O

w at x/b=1.25

w at xlb=2.5

w at xIb=3.75
wat xlb=5

Fig. 7. Buckling mode shapes for the same plate as Fig. 6, but with M xy = 0 on the unloaded
supported edge (case D, deformation theory). (a) In-plane displacements of the two facings, (b)

out-of-plane displacements.
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width of the plate. In essence, the particular combination of boundary conditions M yy = 0
on x = 0, a, and M xy = °on y = 0, b, has made it possible for the facings to undergo rather
unconstrained displacements (i.e. the ¢ and ljJ rotations), by allowing the low modulus core
to deform both in in-plane and out-of-plane shears. Calculations show that this observation
remains valid even for a relatively short (say alb = 1) plate. Thus, it is mainly a boundary
condition phenomenon and can be expected to occur for sandwich plates in elastic as well
as plastic regimes. However, as mentioned before, this mode is not a critical one when the
boundary conditions on the rotation ¢ are symmetric, as in the case of the simply supported
plate on four sides with M)y = °at x = 0, a and M n = °at y = ± b12.

6. CONCLUSION

The analysis presented in this paper provides a quite straightforward method of
calculating the buckling load of sandwich plates in both elastic and plastic regimes.
However, due to a lack of experimental data, comparison between the theoretical results
obtained in this paper and experimental results cannot be made. Nevertheless, part of the
theoretical results contained in Section 4 are compared with those obtained by Seide and
Stowell (1948), using a different approach. The comparison shown in Table 3 is based on
the deformation theory of plasticity for infinitely long plates simply supported on four
sides. The core is assumed to remain elastic.

With reference to Table 3, the agreement between the results of Seide and Stowell
(1948) and those for the ¢ = °case of the present theory is quite good, with differences not
higher than + 1.8% at the high end of the buckling stress, and not lower than - 2.8% at
the low end. On the other hand, the results obtained for M xy = °of the present theory are
all lower than those of Seide and Stowell (1948), by amounts from - 1.7 to - 8.0%.
According to Seide and Stowell (1948), their theoretical results are in fair agreement with
their experimental results, with an average difference of about 8% on the unconservative
side. Hence, on the basis of these experimental results, it may be concluded that the buckling
loads obtained in this paper for the Mxy = °case will be on average about 3% higher than
the experimental results. This comparison confirms the validity of the analysis presented in
this paper.

None of the results presented in Section 5 for the buckling of a plate simply supported
on three sides and free on the fourth side have a counterpart in the paper of Seide and
Stowell (1948). These results are entirely new, and are significant not only from a theoretical
viewpoint, but also from a practical one. A lack of proper reinforcement at the edges of a

Table 3. Buckling stress in ksi (1 ksi = 6.89 MPa) for rectangular sandwich plates
supported on all four sides; I = incremental, D = deformation theory; numbers in par

enthesis indicate the half-waves in the longitudinal direction

b/h
t/h=0.15 40 50 60

1=0 I: 44.0 (16) 1: 37.3 (15) 1:31.2(13)
(present theory) D: 41.1 (16) D: 35.8 (14) D: 30.6 (13)
Mn=O 1: 41.9 (16) I: 35.4 (14) I: 29.4 (12)
(present theory) D: 39.8 (15) D: 34.3 (13) D: 29.0 (12)
Seide and Stowell D: 40.5 D: 36.0 D: 31.2

b/h
t/h = 0.1 45 50 60

1=0 I: 44.1 (16) I: 39.8 (14) I: 32.2 (12)
(present theory) D: 40.4 (14) D: 37.3 (13) D:31.3(12)
Mn=O 1:41.7(14) 1:37.6(13) I: 30.5 (12)
(present theory) D: 39.0 (13) D: 35.9 (12) D: 29.9 (II)
Seide and Stowell D: 39.7 D: 37.0 D: 32.5
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Table 4. Buckling stress in ksi (I ksi = 6.89 MPa) for
rectangular sandwich plates simply supported on three
sides and free on the fourth side; the number of half-

waves is I for each of the listed cases

Incremental theory h/h
(t/h = 0.1) 17 19 21

¢ = 0 at)' = 0 41.5 34.4 28.9
ll1,,_ = 0 atl' = 0 31.1 26.8 23.2

Deformation theory !J!h
(t/h = 0.1) 13 17 21

¢ = 0 at 1=0 44.9 36.5 28.1
M" = 0 at)' = 0 38.2 30.1 23.0

sandwich plate may cause the facings to buckle independently. Table 4 illustrates the drop
in buckling stress from the ¢ = OcasetotheMn = Ocaseforplateswithtlh = O.l,alb = 10,
and some selected blh ratios. The drop is more for the incremental theory (20-25%) than
for the deformation theory (15-18%).

To assess some drawbacks, we recall the fact that the boundary conditions at the
loaded edges can only be simply supported in the sense IjJ = 0 if separation of variables is
sought. For other boundary conditions, the governing equations will have to be solved
numerically using either the finite difference or the finite element method. It may be argued,
however, that since the boundary conditions are symmetric at x = 0, a, relaxation of the
conditions from IjJ = 0 to M XF = 0 will probably not cause a decrease in the buckling stresses
by more than 5-10% of their present computed values. Another deficiency is that wrinkling,
which involves buckling of the two facings independently in small waves or ripples, cannot
be dealt with by the present analysis, This kind of buckling is possible if the facings are too
thin or the core is too soft.

Finally, one again encounters the situation that the bifurcation buckling stresses
predicted on the basis of the incremental theory of plasticity are consistently higher than
those predicted by using the deformation theory, as can be seen from Tables 3 and 4. The
differences are, however, less pronounced compared to those for homogeneous plates.
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